ロボカップジュニア サッカーロボット作成講習会

第二回 ソフトウェア編1

- ・ 第一回 ロボット作成
- 第二回 ソフトウェア入門編 – ロボットを動かす
- 第三回 ソフトウェア基礎編
 外界の情報をもとにロボットの動きを変える
- 第四回 ソフトウェア応用/試合編
 試合に勝つエ夫をプログラムする

ロボカップの目的

- 「FIFAルールに従い2050年までにワールドカップ チャンピオンチームに11台のヒューマノイドロボッ トで勝利する」
- 目的
 - この過程で開発される多くの技術が様々な分野に応用 されることにより、より豊かな社会が実現されること を期待する

ロボカップジュニアの目的

- 最終目標に向けた次世代研究者の育成
- ロボカップを通じたものづくり教育
 - 次のことを期待
 - •科学知識の習得(次頁参照)
 - •科学的、論理的な考え方を身につける
 - 自ら工夫し挑戦する
 - だれとでも(大人・外国人)会話できる

本講習会の目的

ロボカップジュニアの大会に出場するために

- 1. ロボットの基本的なしくみを理解する
- ロボットを思いどおりに動かせるように プログラミング
- 3. ロボットの改造
- 4. ルールと戦略(どう戦えばいいか)を理解

学習のポイント

- ・メモする
 - 目的、目標
 - やること、やったこと(計画)
 - 観察したこと(事実)
 - ひらめいたこと、思いついたこと(思い)
 - 聞いたことなど 何でも

お願い子供たちに

質問があるときはてをあげて 自分で質問して下さい

教えてもらったら、 お礼を言いましょう

お願い 保護者の方への

• 子供は上手にできませんが、

できるだけ見守ってやってください

- コツを教えてあげてください

- カが足りないときは手伝ってやってください
- スタッフを呼ぶのはお子さんに

させてください

学習のポイント2

はじめる前に

- ・ 紳士的に
 - 静かに話を聞く、礼儀正しく
 - 接する人(両親、友達)に敬意を持つ
 - ロボット・道具・会場設備を大切に
 - 自分の行動に責任を持つ
- 主体的に
 - 自分で考え、わからない点は自分で聞く・調べる
 - 自分で手を動かしてやってみる

サッカーロボットのしくみ

ロボットとは?

- 人間に類似した形態をもち、
 自動的に作業を行う機械装置
- 感じる、判断する、動くの三つが そなわっている人工物※
- 環境に溶け込み人の役に立つもの(見えないロボット)
 例:エアコン、洗濯機、テレビ、車

自律ロボットって?

自律行動

ロボットに自律行動をさせるには?

• 課題を解くための手順を考える

アルゴリズム \Rightarrow

プログラムミング

• 手順をロボットにわかる言葉に書きかえる

 \implies

ロボット工学

Wikipediaより

ロボカップジュニアに参加するロボットのたち

ORJAロボ2016/2017

Arduinoとは

イタリア生まれの教育用マイコンとプログラミング環境

- デザイン科の学生向けに作られたのでプログラムしやすい
- ハードウェア/ソフトウェアとも作り方が 誰でもタダで勉強できるようになっている
 - 知りたいことがインターネットで見つかる
 - 多彩な増設ボードが販売されている

コントローラボード

ごかんき

- Arduino互換機 DFRobot社RomeoV2
 - Arduino Leonard互换
 - Arduino用のプログラム・増設ボードを使える
 - 標準機から追加されている機能
 - モータを動かす回路(2個)
 - ・ボタン(5個)
 - センサー接続ピン
 - 各信号線に5V/GNDを増設
 - I²C用専用ピン増設(2セット)
 - 無線通信増設口

コントローラボード

• スピーカを~10とGNDにリード線を差し込む

準備 LEDとボタン

アルゴリズム

アルゴリズムとは?

- コンピュータで計算を行うときの「計算方法」
- 何か物事をやるときの「やり方」

「やり方」を工夫して、よりよいやり方を
 見つけていきます

国立情報学研究所のホームページ http://research.nii.ac.jp/~uno/algo_3.htm

より良いアルゴリズムとは

星形にんじんを30枚作るには、 何回包丁を使う?

国立情報学研究所のホームページ http://research.nii.ac.jp/~uno/algo_3.htm

より良いアルゴリズムとは

合計 331回 包丁をいれる(31回+10回×30枚)

より良いアルゴリズムとは

合計41回 包丁をいれる(10回 + 31回) 方法1(331回)に比べ、290回少ない

パソコンの使い方

マウスの使い方

クリック ダブルクリック ドラッグ 左ボタン(人差し指)を押してすぐに離す クリックをすばやく2回する 左ボタンを押したままマウスを移動する

ArucuBlockを動かす1

- パソコンの画面を"デスクトップ"といいます
- デスクトップにある「Arduino-x.x.x ~」を ダブルクリックします
- arduino.exeをダブルクリックします

- ArduinoIDEが動き出します
 - IDEはIntegrated Development Environment (統合開発環境)の略称です

Copyright **ORJA** All Rights Reserved.

ArucuBlockを動かす2

 ArduinoIDEのメニューから [ツール]-[ArduBlock]を選びます

ArduBlockが動きます

ArduBlock(アルドゥブロック)

ロボットへのプログラムの入れ方

プログラム実行までの流れ

- 1. パソコン上でプログラムを作成
 - 人がわかる言葉・図形で表現
- 2. コンパイル・リンク
 - ロボットがわかる言葉に変換
 - あらかじめ用意されているプログラムと合体
- 3. ロボットヘダウンロード
 - パソコンからロボットヘプログラムを送る
- 4. ロボット上でプログラムを動かす

プログラム実行までの流れ

ロボット取扱上の注意点

机の上では、動かさないこと – 落ちて壊れることがあります

プログラムをロボット入れる

ロボットとパソコンをつなぐ

[Arduinoにアップロード] ボタンを押す

プログラミング

LED点滅 (Lチカ)

LED

• LED(Light Emitting Diode): 発光ダイオード

LEDの原理

• 励起発光

光
 ・ 原子核
 ・ 電子
 ・ 電子

外部からエネルギーを与えると、電子は軌道を 飛び出し、高エネルギー状態になる。 電子が元の軌道に戻るとき、過剰なエネルギーが 光として放出される。

- エネルギー変換効率
 - LED照明
 - 白熱電球
 - 蛍光灯
 - HID(高圧放電)ランプ
 - 北米産蛍

25~30% 10~15% 25% 20~40% 41%

LEDのしくみ

• 発光ダイオード(Light Emitting Diode)

• 動画(Panasonic) <u>発光ダイオードのしくみ動画 (Panasonic)</u> (http://www2.panasonic.biz/es/lighting/led/led/ movie/index.html)

プログラムを作ってみよう

LEDを1秒明るくするアルゴリズム

• 動きを細かく分析、分解する

LEDを点灯するプログラム

・ LEDを1秒間点灯するプログラム

LEDを一秒間点灯するプログラム

プログラムは上から順番にひとつずつ実行される

プログラム解説

『デジタル回路』は"0ボルト"と"電源電圧値"の2つの電圧値だけを扱う 0ボルトをLOW、電源電圧値(RomeoV2は5ボルト)をHIGHと呼ぶ

単位の接頭辞について

- セント
 cm(センチメートル)
 100分の1
- ミリ
 - mm(ミリメートル)
 - mg(ミリグラム)
 - 1000分の1(1/1000)
- マイクロ
 - μm(マイクロメートル)
 - μg(マイクログラム)
 - µ秒(マイクロ秒)
 - 100万分の1 (1/1000000)

- %(パーセント)
 - パーとは割ることを 意味している
 - セントで割る →百で割る

コンパイル・ダウンロード

ロボットにプログラムを書込む準備1

- ロボットとパソコンをUSBケーブルで接続して
 ください
 - -ケーブルをつなぐ前にロボットの電源がオフ になっていることを必ず確認してください ロボットが急に動き出し机から落ちることが あります

ロボットにプログラムを書込む準備2

ArduinoIDEのメニュー[ツール]-[ボード] から"Arduino Leonard"が選ばれている ことを確認します

Arduinoメニューの[ツール]-[シリアル ポート]から"COMx (Arduino Leonard)" が選ばれていることを確認します

💿 sketch_jul23a Ardu	uino 1.6.9		_			\times		
ファイル 編集 スケッチ ツー	ール ヘルプ							
	自動整形 スケッチをアーカイプする	Ctrl+T				Ø		
int _ABVAR_1_Ball void setRomeoMote	エンコーディングを修正 シリアルモニタ シリアルプロッタ	Ctrl+Shift+N Ctrl+Shift+L	Л			^		
{ int speedPin, c if (motorId ==	ArduBlock							
{	ボード: "Arduino Leonardo"		>					
speedPin = 5;	シリアルポート: "COM3 (Arduino Leonardo)"	·	>	_	シリアノ	レポート		
directionPin	Get Board Info	l		\checkmark	COM3	(Arduin	o Leonardo)	
} else {	書込装置: "AVRISP mkll" ブートローダを書き込む		>					

ロボットにプログラムを書込む

[Arduinoにアップロード]ボタンを押します

ArduBlock untitled *	_		×
新規作成 保存 名前をつけて保存 開く Arduinoにアップロード	シリアル	レモニター	
制御			

「ボードへの書き込みが完了しました。」と表示されたら、 正しくロボットにプログラムが入っています

ボードへの書き込みが完了しました。

最大28,672バイトのフラッシュメモリのうち、スケ 最大2,560バイトのRAMのうち、グローバル変数が14

自分の思ったとおりの動きをしましたか?

デバッグ

自分の思いとは違う動きをした場合はプログラムを 修正する→ これを「デバッグ」という

Arduinoはプログラムを繰り返し実行する

LEDを点滅するプログラム

• LEDを1秒ごとに、つけたり消したりするプログラム

プログラムの管理について

- 最初にプログラムの置いておく場所を決める
 - ここではデスクトップに"robot" というフォルダを作る
 こととします(名前は好きな名前でもOK)

並べ替え(O) 最新の情報に更新(E)

新規作成(X)

🧧 画面の解像度(C) 🐋 ガジェット(G)

🜌 個人設定(R)

元(J戻す - 名前の変更(U) Ctrl+Z

▶ 🛄 フォルダー(F)

連絡先

ショートカッN(S)

💌 ビットマップ イメージ

- フォルダが出来たら名前を 「robot」に変えます

• 最初にプログラムの保管する場所をするとき

プログラムの保存2

保存しているプログラムを修正し保存をするとき
 プログラムの保存後、内容を少しでも修正すると、ウィンドウタイトルの末尾に"*"マークが表示される

🚳 ArduBlock Program1.abp 🕷

プログラムの保存3

しかりと改造できたプログラムが完成したとき
 - プログラムに新しい番号を付け上書き保存する

🕌 Ardul	Block LED1.abp					
新規	作成 保存 名	前をつけて保存	開く	Arduinoにアップロ		
 コントロー ピン くらべる 計算する 変数/定数 						
🌜 保存	E				×	
保存:	robot			V 🤌 📂 🕻		
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●	ELED1.abp					
デスク						
, , , ,				プログラムの名	るの後ろに	-
ドキュ				番号を付け、こ	れを増や	す
PC						
	ファイル名(N):	LED2			保存	
ネット	ファイルのタイプ(T)	: ArduBlockプロ	コグラムフ	ファイル(*.abp) 〜	取消	

プログラムの保存4

- 今あるプログラムから、
 大きな改造をしようと思ったとき
 - 最初にプログラムに新しい名前を付け上書き保存する

🕌 ArduBlock	Program2.abp						
	新規作品	成 保存	名前をつ	けて保存		Arduin	1
(1)	iðn 🔹	•					
▲保存						×	
保存	퉬 プログラム		• 🦻	• 🖭 👏			
最近使った項 最近使った項 デスクトップ マイドキュメント	Program1.abp				プログラ 新しい小	シムの名をかさな番号	変え を付ける
ער בטעב-א-	ファイル名(N): ファイルのタイプ(T):	TEST01 ArduBlockプログラ	iムファイル(*.abp)	-	保存 取消		

プログラミングしてみよう

音を鳴らす

スピーカ

スピーカとは

• 電気エネルギーを空気の振動に変える

- 磁石とコイルを利用した物

– 圧電素子を利用した物

ドの音を一秒間隔で鳴らす

• 動きを細かく分析、分解する

正午の時報を鳴らす

正午の時報

440Hzのラの音を0.1秒	音階	周波数(Hz)	音階	周波数(Hz)
0 9秋無音	ド	261.63	ド	523.23
	レ	293.67	レ	587.34
	Ξ	329.63	Ξ	659.25
0.9秒無首	ファ	349.23	ファ	698.45
440Hzのラの音を0.1秒	ソ	392	ソ	783.98
0.9秒無音	ラ	440	ラ	879.99
880Hzのラの音を1.5秒	シ	493.88	シ	987.75
無音	ド	523.23	ド	1046.5

正午の時報を鳴らす

プログラミング

ロボットを走らせる

モータ

「モータ」とは、 電気エネルギーを 機械エネルギーに 変換する装置です。

DCモータとは

- 直流の電気を流すと電圧に応じて
 回転数が変化する
 - 速度制御がしやすい
 - 構造が簡単→安い
 - バリエーションが豊富

モータの性能と要因

<u>マブチモータ 技術ガイド モータの原理と構造 より抜粋</u> http://www.mabuchi-motor.co.jp/ja JP/technic/t 0100.html

モータの回転を制御するには

モータの回転を制御するには

モータの回転を制御するには

Hブリッジ

- モータの回転方向を制御する
 - a)トランジスタによる構成例

b) MOS FETによる構成例

PWM

Pulse Width Modulation

モータドライバ

モータを強く駆動するための電子回路 コントローラの出力では 電力が足りずモータを強力に駆動できない モータドライバを用意する必要あり

ORJAロボ2016/2017

左モータ (M2)

右モータ

(M1)

前進させてみよう

• 所定時間前進して止まるアルゴリズム例

- ここからは資料をみて問題を解いてみてください。
 (あせらなくても だいじょうぶです)
- 質問がある人は手を挙げて下さい
- できた人は近くの先生に見せて下さい

