ロボカップジュニア サッカーロボット作成講習会

第三回 ソフトウェア編2

講習会の進め方

第一回 ロボット作成

第二回 ソフトウェア入門編 ロボットを動かす

第三回 ソフトウェア基礎編 外界の情報をロボットに取り込む

第四回 ソフトウェア応用編 試合に勝つ工夫をプログラムする

講習会第三回の予定

10:00~10:10 講義の進め方

10:10~10:40 センサの値を見てみよう

10:40~11:00 ボールセンサ

11:00~12:00 練習問題

(昼休憩)

13:00~14:30 練習問題

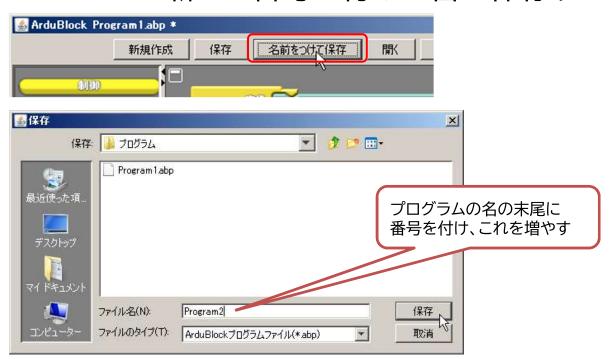
14:30~14:50 試合に向けて

14:50~15:30 練習試合

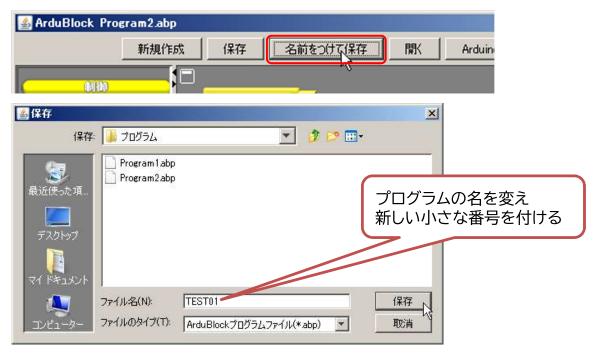
15:30~ 質疑応答/解散

注意点をもう一度

プログラムの保存

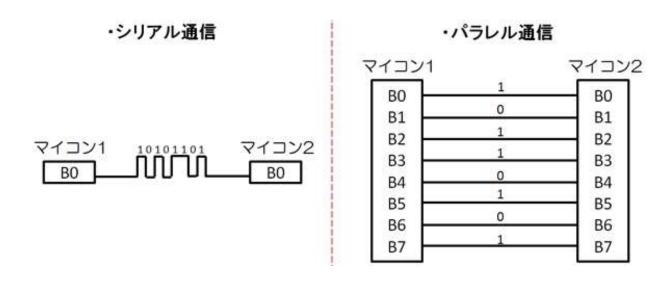

ある程度プログラムを修正したら、 念のためプログラムを保管する

プログラムの保存


- しかりと改造できたプログラムが完成したとき
 - プログラムに新しい番号を付け上書き保存する

プログラムの保存

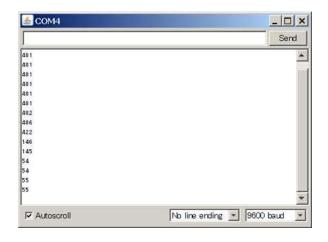
- 今あるプログラムから、 大幅な改造をしようと思ったとき
 - 最初にプログラムに新しい名前を付け上書き保存する

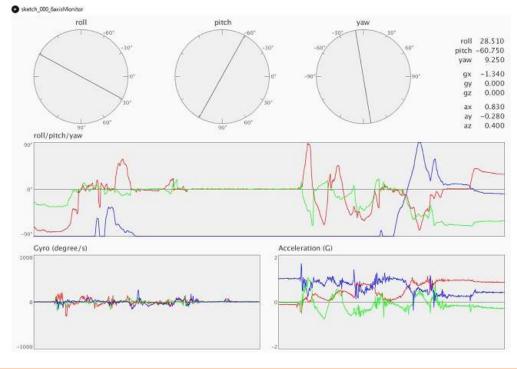

シリアル通信とシリアルモニタ

信号の値を見る

シリアル通信

- デジタル信号を1bitずつやり取りすること
- デジタルでの最も基本的なデータ取り扱い
 - 極単純な装置でほとんどの機器についている

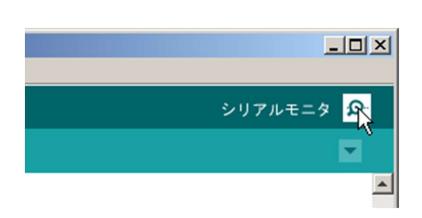




シリアルモニタ

1bitずつ送られてくるデータを表示する

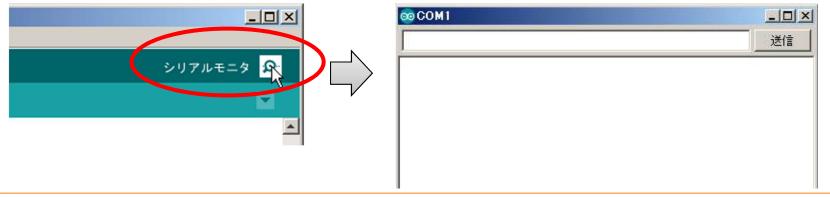
• 人間が確認できるので装置の状態を知ることが出来る



センサの値を見てみよう

センサの値を読む

- センサの値を見るためにArduinoの シリアルモニタを利用します
 - Ardublockでセンサの値をパソコンに送る
 - ArduinoIDEで送られてくる値を表示する



Ardublockのシリアル通信

下図のようにブロックを組んでロボットへ アップロードして下さい

アップロードできたらシリアルモニタを 見てみましょう



ボタンの値を表示する

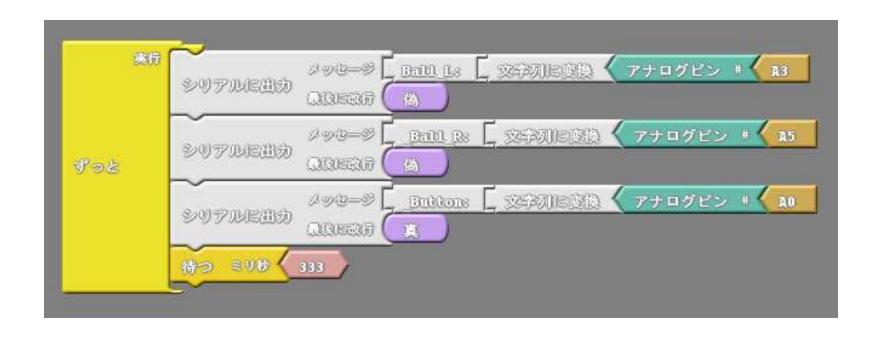
messageと表示されていた 部分をダブルクリックすると、 自由に文字を変更できる

表示したい文字を表示

アナログピン0番の値を文字に変換して、前の文字につなぐ

センサとボタンの値を表示する

ボタンの値を表示するプログラムを改良して 右側のボールセンサの値を表示するプログラムを作りま しょう


ヒント

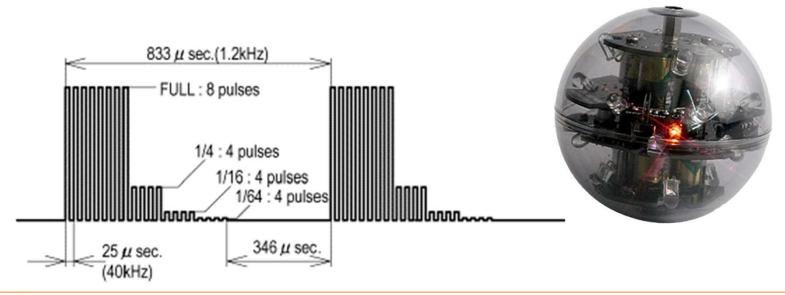
右側のボールセンサは何番のピンにつながっていますか

※ 表示される値が何の値かわかるように、 "message"を修正しましょう

センサとボタンの値を表示する

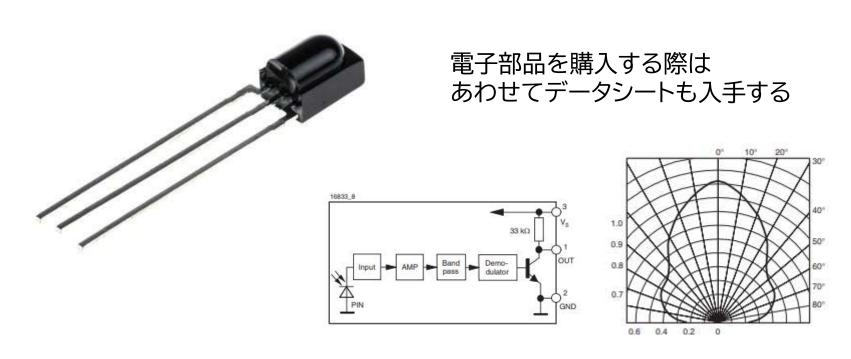
数字の変化を見てみよう

- ボタン
 - 各ボタンが押された時の値
- ・ボールセンサ
 - ボールが無いときの値
 - ボールがロボットの目の前にあるときの値
 - ボールが30cm前にあるときの値


ボールセンサ

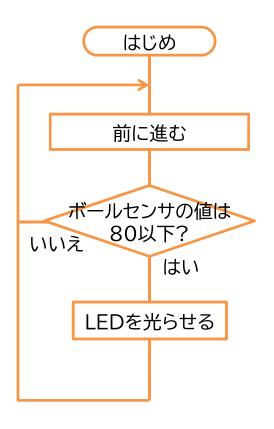
ボールを見つけたらLEDを光らす

ボールとボールセンサの仕組み


- ・ 家電製品のリモコンの赤外線発光素子が使われている
 - ボールが発する信号は40kHzの周波数で変調された 赤外線(日本のリモコンは38kHz)
 - 赤外線LEDが波長940nmの赤外線を出している

ボールとボールセンサの仕組み

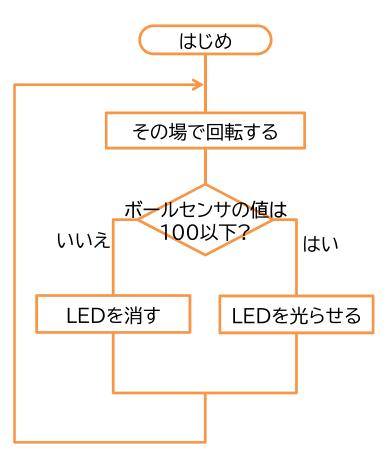
- リモコン受光素子をボールセンサとして利用
 - ORJAロボ2019ではVishay社" TSSP58038"を利用

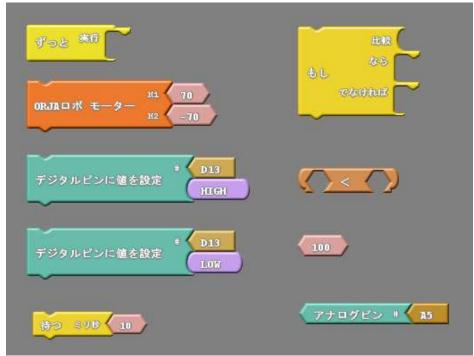


ボールに向かってロボットを前進させ、右ボールセンサの値が80より小さくなったらLEDを光らせましょう

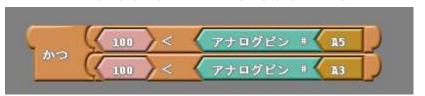
ボールが近いとLEDを光らせる

条件分岐を使う もし○○なら△△する




ロボットをその場で回転させて、右ボールセンサの値が100より小さいときはLEDを光らせ、100より大きいときはLEDを消しましょう

ボールが近いとLEDを光らせる


条件分岐を使う もし○○なら△△する そうでないときは××する

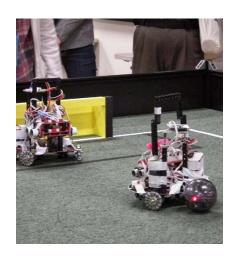
ロボットをその場で回転させて、左右のボールセンサの値が両方とも100より小さいときはLEDを光らせ、そうで無い時はLEDを消しましょう

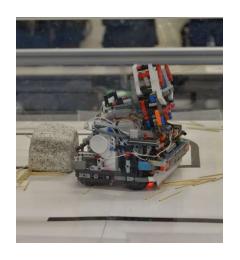
ヒント:AND条件(かつ条件)を使います

ロボットをその場で回転させて、左右のボールセンサの値の差が30以下の場合LEDを光らせましょう

ヒント:計算式を使います

ロボットをその場で回転させて、左右のボールセンサの値の差が30以下の場合、ロボットを前進させましょう




試合に向けて

大会の競技種目

- サッカーリーグ
 - オープンクラス
 - ライトウェイトクラス
 - ビギナーズクラス (Nipponリーグ)
- ・レスキューリーグ
 - メイズ
 - ライン
 - ライン(Nipponリーグ)
- レスキューシミュレーション
- オンステージ

クラスによるルールの違い

大会に出場できるロボットの制限

- サイズ
 - 直径22cm高さ22cmの円柱に入るサイズ
 - 円柱の内側にふれてはダメ
 - ケーブルなどしっかり止められていないは物は部品はひっぱられる
 - ボールが3cm以上ロボットに入り込んではダメ (ライトウェイトクラス/ビギナーズ)
- ハンドル
 - 審判がロボットを持てるようにハンドルが必要
 - ハンドルは高さは22cm±2cm
- 電源電圧
 - ビギナーズクラス 9V以下(みなさんの出場予定のクラス)
 - ライトウェイトクラス 12V以下
 - オープンクラス 15V以下
- 動き
 - ロボットは前後左右に移動できるようにできていないとダメ
 - ゴール前で左右に動くだけのロボットはダメ
 - 試合中でも審判が動きを確認することがある。ダメなら故障とされる

試合ルール

試合ルール

- 特殊なルール
 - ラック・オブ・プログレス(試合進行の停止)
 - 試合の進展が見られない場合
 - →主審がカウント開始を宣言し3カウントの後、 ボールを中立点に移動する。
 - →それでも試合に動きが見られない場合は、 更に3カウントし異なる中立点にボールを移動する
 - →中央中立点にボールを移動しても、 試合に進展が見られない場合は「リスタート」となる
 - リスタートは各チームのロボットをセンターサークル外に置き、 主審の合図に合わせ、ロボットをスタートさせる
 - ロボットがボールを押し合い、動きが無い場合(スタック)
 - →審判はスタックを宣言し、ただちにボールを最寄りの 中立点に移動する

試合に必要なこと

- 僅かな工夫が勝敗を決める
 - 小さな工夫を積み上げる
 - 一人で考えるよりも話し合う
 - アイディアを出し合う
 - 人のアイディアに自分の考えを足してみる
 - 人のアイディアを否定しない
 - 試合相手のロボットの良いところを見つけまねする

